
THINKING IN 
NSLAYOUTCONSTRAINTS



!

WHO AM I?
I run M Cubed Software (mcubedsw.com)	


Built many apps using Auto Layout	


Last year I talked about how Auto Layout thinks	


This year I’ll talk about how you should think



!

WHAT IS AUTO LAYOUT?
Constraint-based layout system for iOS & Mac	


Define relationships between views	


Introduced in Mac OS X 10.7 and iOS 6	


Make previously complex layout problems simple	


Requires a different way of thinking about layout	


Fits more closely to your natural mental model



CONSTRAINTS: HOW DO 
THEY WORK?



!

CONSTRAINTS

Represented by NSLayoutConstraint	


Defines relationship between two attributes	


Attributes are effectively variables	


Treat a constraint as small function modifying a variable

y = mx + c



!

CONSTRAINTS

Represented by NSLayoutConstraint	


Defines relationship between two attributes	


Attributes are effectively variables	


Treat a constraint as small function modifying a variable

view1.attribute = m * x + c



!

CONSTRAINTS

Represented by NSLayoutConstraint	


Defines relationship between two attributes	


Attributes are effectively variables	


Treat a constraint as small function modifying a variable

view1.attribute = m * view2.attribute + c



!

CONSTRAINTS

Represented by NSLayoutConstraint	


Defines relationship between two attributes	


Attributes are effectively variables	


Treat a constraint as small function modifying a variable

view1.attribute = multiplier * view2.attribute + constant



!

CONSTRAINTS

Represented by NSLayoutConstraint	


Defines relationship between two attributes	


Attributes are effectively variables	


Treat a constraint as small function modifying a variable

v1.attr = multipler * v2.attr + constant



!

CONSTRAINTS

Represented by NSLayoutConstraint	


Defines relationship between two attributes	


Attributes are effectively variables	


Treat a constraint as small function modifying a variable

v1.attr = multipler * v2.attr + constant



!

ATTRIBUTES

Width

Height

v1.attr = multipler * v2.attr + constant

Attributes are available for height and width



!

ATTRIBUTES

CenterX

CenterY

Baseline

v1.attr = multipler * v2.attr + constant

And for horizontal centre (Center X), vertical centre (Center Y) and baseline



!

ATTRIBUTES

Left

Leading

Right

Trailing

Top

Bottom

v1.attr = multipler * v2.attr + constant

Also for left/leading, right/trailing, top and bottom



!

ATTRIBUTES

Left

Leading

Right

Trailing

Top

Bottom

v1.attr = multipler * v2.attr + constant

In a right to left language, trailing and leading swap round. If you are using these rather than left and right, then your UI will flip around after you provide a 
localisation, saving you a lot of work



!

RELATIONSHIPS

Equal	


Greater than or equal to	


Less than or equal to

v1.attr = multipler * v2.attr + constant



!

MULTIPLIER AND CONSTANT

Multiplier - The ratio between two attributes	


Constant - The difference between two attributes

v1.attr = multipler * v2.attr + constant



!

PRIORITY

How strongly should a constraint be satisfied	


Constraints required by default	


Optional constraints can be broken without errors	


Required constraints have priority 1000	


Lower priority constraints are broken to satisfy higher priority ones

v1.attr = multipler * v2.attr + constant



YOUR NEW MENTAL MODEL



!

RELATIVE VS ABSOLUTE

Don’t think in frames, think in relationships	


Most constraints are relative to other attributes	


No need to do complex calculations based on other views



!

THINKING IN VALUES

Can be hard to work out what attributes, constant etc to use	


Don’t think of them as abstract values	


Substitute in numbers



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
box.bottom

view.bottom

35 y = mx + c



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
box.bottom

view.bottom

35 box.bottom = mx + c

We want to set box.bottom so we’ll use that as “y”



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
box.bottom

view.bottom

35 box.bottom = x + c

We’re not using a ratio so m is 1, therefore we can remove it



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
box.bottom

view.bottom

35 box.bottom = view.bottom + c

x becomes our other attribute



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
box.bottom

view.bottom

35 box.bottom = view.bottom ± 35

We don’t yet know if c will be positive or negative 35



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
box.bottom

75

35 box.bottom = view.bottom ± 35

We can substitute in numbers. In this case we’ll say view.bottom is equal to 75



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
box.bottom

75

35 box.bottom = view.bottom - 35

As the origin is in the top left, the y values decrease as we move up the view. As such we need to reduce the value of 75 by 35 to get box.bottom, 
therefore c is minus 35.



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
40

75

35 box.bottom = view.bottom - 35



!

THINKING IN VALUES

Relationship between box.bottom 
and view.bottom	


Distance between is 35
40

75

35 view.bottom = box.bottom + 35

If you don’t like negative constants you can re-arrange the equation



!

CONSTRAINING A VIEW

All views need at least 4 constraints	


Need to position and size in both horizontal and vertical axes

leading 
!

top 
!

width 
!

height



!

CONSTRAINING A VIEW

All views need at least 4 constraints	


Need to position and size in both horizontal and vertical axes

trailing 
!

bottom 
!

width 
!

height



!

CONSTRAINING A VIEW

All views need at least 4 constraints	


Need to position and size in both horizontal and vertical axes

top 
!

bottom 
!

leading 
!

trailing



!

INTRINSIC CONTENT SIZE

Views know how to layout some content	


Therefore they know the smallest size to display that content	


Implicit constraints defining intrinsic width & height

Hello100pt

200pt

The view has an intrinsic size of 200 by 100 points based on its content



!

INTRINSIC CONTENT SIZE

Views know how to layout some content	


Therefore they know the smallest size to display that content	


Implicit constraints defining intrinsic width & height

Hello=100

=200

@250Hugging

Autolayout adds implicit content hugging constraints that say the width should be equal to the intrinsic width and the height equal to the intrinsic height, 
so the view tries to be the smallest size possible to display its content. These are usually set at a low priority of 250



!

INTRINSIC CONTENT SIZE

Views know how to layout some content	


Therefore they know the smallest size to display that content	


Implicit constraints defining intrinsic width & height

Hello≥100

≥200

@750Compression Resistance

At the higher priority of 750 it adds two more implicit constraints, the content compression resistance constraints. These say the width must be greater 
than or equal to the intrinsic width and the height greater than or equal to the intrinsic height, so that the view does not clip its content.



!

INTRINSIC CONTENT SIZE

GoodbyeHello

There are two buttons side by side, Hello and Goodbye. There is a fixed distance constraint between them and a fixed width constraint on the hello button



!

INTRINSIC CONTENT SIZE

GoodbyeHello…

If we change the title of the hello button it will clip its content. The width constraint conflicts with the intrinsic width constraints, but due to them having a 
lower priority they are broken in order to satisfy the higher priority width constraint



!

INTRINSIC CONTENT SIZE

GoodbyeHello…

You should avoid using explicit width and height constraints as this allows views to resize to fit their content (this is what allows content-aware layout and 
easier localisation).



!

INTRINSIC CONTENT SIZE

GoodbyeHello World

As we still have the fixed distance constraint, the goodbye button will move along to maintain that distance, even though the hello button has changed its 
width.



CALCULATING 
UITABLEVIEWCELL 

HEIGHTS 



!

AUTO LAYOUT & UITABLEVIEW

Create table cells as any view, adding constraints to define height	


Use -systemLayoutSizeFittingSize: to return height	


Get cell from table view	


Set a vertical constraint to have priority 999	


Or use template cell

sysLayoutSize… takes a size you want a view to be and returns the closest size it can be while satisfying constraints on the view. E.g if you want the 
smallest size a view can be you could pass in CGSizeZero.!
One way is to get the cell to calculate it. This creates the cell and adds it though with the wrong height.
Another way is to have a template cell so you can get a size independently



!

AUTO LAYOUT & UITABLEVIEW

Create table cells as any view, adding constraints to define height	


Set estimatedRowHeight to most common height	


Ensure rowHeight is UITableViewAutomaticDimension

iOS 8



AUTO-RESIZING 
UIIMAGEVIEW



😄

Image views don’t really handle resizing images very well.



If you add a larger image it may well get squashed or stretched out of proportion



💩



!

AUTORESIZING

Subclass UIImageView	


Add following:

- (CGSize)intrinsicContentSize { 
  return self.image.size; 
} 

- (void)setImage:(UIImage *)aImage { 
  [super setImage:aImage]; 
  [self invalidateIntrinsicContentSize]; 
} 



!

AUTORESIZING (WITH LIMITS)
- (CGSize)intrinsicContentSize { 
  CGSize imageSize = self.image.size; 
  CGSize maxSize = self.preferredMaxSize; 
         
  if (imageSize.height > maxSize.height) { 
    imageSize.width *= maxSize.height / imageSize.height; 
    imageSize.height = maxSize.height; 
  } 
  if (imageSize.width > maxSize.width) { 
    imageSize.height *= maxSize.width / imageSize.width; 
    imageSize.width = maxSize.width; 
  } 
  return imageSize; 
} 

This is a slightly more advanced implementation that allows us to set a maximum size.



SWITCHING ORIENTATION



The alignment constraints and spacing constraints between the two views conflict if they’re always required



By making them optional and changing priorities we can ensure the constraints can stay on the view but are not satisfied



!

DISABLING/ENABLING CONSTRAINTS

Make constraints optional	


Set constraint priorities to 999 to enable	


Set to 1 to disable



!

DISABLING/ENABLING CONSTRAINTS

New active property	


+[NSLayoutConstraint (de)activateConstraints:] for bulk 
changes	


Use NIBs with size classes

iOS 8



ANIMATION



There is a view with a subview. The animation will add a panel and then slide it in over the parent and its subview.





!

FRAME BASED ANIMATION

[UIView animateWithDuration:0.5 animations:^{ 
  
!
!
!
!
}];

CGFloat panelHeight = 150; 
[panel setFrame:CGRectMake(0,  
                           CGRectGetHeight(view.frame),  
                           CGRectGetWidth(view.frame),  
                           panelHeight)];

[view addSubview:panel];

  CGFloat y = CGRectGetHeight(view.frame) - panelHeight; 
  [panel setFrame:CGRectMake(0,  
                             y,  
                             CGRectGetWidth(view.frame),  
                             panelHeight)];

So what would a method to display this panel look like



!

AUTO LAYOUT BASED ANIMATION
CGFloat panelHeight = 150;
[view addSubview:panel];
[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“|[panel]|”  
                                                            options:0  
                                                            metrics:nil  
                                                              views:@{@“panel”:panel}];
[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“V:[panel(==height)]" 
                                                            options:0  
                                                            metrics:@{@"height":panelHeight}  
                                                              views:@{@“panel”:panel}];

Lots of setup
You’ll notice we don’t care about the horizontal position or the width or the height. We only care about changing this bottom constraint (i.e. moving the 
panel up) which is the purpose of the animation



view.bottom

panel.bottom

==panelHeight

panel.bottom = view.bottom + panelHeight



!

AUTO LAYOUT BASED ANIMATION

[UIView animateWithDuration:0.5 animations:^{ 
!
!
}];

CGFloat panelHeight = 150;
[view addSubview:panel];
[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“|[panel]|”  
                                                            options:0  
                                                            metrics:nil  
                                                              views:@{@“panel”:panel}];

id bottom = [NSLayoutConstraint constraintWithItem:panel 
                                         attribute:NSLayoutAttributeBottom 
                                         relatedBy:NSLayoutRelationEqual 
                                            toItem:view 
                                         attribute:NSLayoutAttributeBottom 
                                        multiplier:1 
                                          constant:panelHeight];

[view layoutIfNeeded];
[view addConstraint:bottom];

  [bottom setConstant:0]; 
  [view layoutIfNeeded];

[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“V:[panel(==height)]" 
                                                            options:0  
                                                            metrics:@{@"height":panelHeight}  
                                                              views:@{@“panel”:panel}];

Lots of setup
You’ll notice we don’t care about the horizontal position or the width or the height. We only care about changing this bottom constraint (i.e. moving the 
panel up) which is the purpose of the animation



In this animation the panel is always in the view hierarchy. As it slides in, it resizes the subview (rather than appearing over it)





!

FRAME BASED ANIMATION
CGFloat panelHeight = 150; 
CGFloat margin = 20;

[UIView animateWithDuration:0.5 animations:^{ 
!
!
!
!
!
!
!
!
!
!
}];

  CGFloat viewHeight = CGRectGetHeight(view.frame); 
  CGFloat viewWidth = CGRectGetWidth(view.frame); 
  CGFloat panelHeight = CGRectGetHeight(panel.frame);

  CGFloat panelY = viewHeight - panelHeight; 
  [panel setFrame:CGRectMake(0, panelY, viewWidth, panelHeight)];

  CGFloat subviewWidth = viewWidth - (margin * 2)
  CGFloat subviewHeight = viewHeight - panelHeight - (margin * 2);
  [subview setFrame:CGRectMake(margin, margin, subviewWidth, subviewHeight)];



The subview has its leading, trailing and top edges constrained to its parent. Its bottom is constrained to the panel. The panel has its leading and trailing 
edges constraints to its parent. Its bottom is tied to its parents bottom, as before and its height is fixed.



!

AUTO LAYOUT BASED ANIMATION

[UIView animateWithDuration:0.5 animations:^{ 
  [bottomConstraint setConstant:0]; 
  [view layoutIfNeeded]; 
}];

[UIView animateWithDuration:0.5 animations:^{ 
  [bottomConstraint setConstant:CGRectGetHeight(panel.frame)]; 
  [view layoutIfNeeded]; 
}];



!

WHERE TO FIND ME

I code (mcubedsw.com)	


I blog (pilky.me)	


I tweet (@pilky)	


I’m writing a book (autolayoutguide.com)



QUESTIONS?


