
THINKING IN
NSLAYOUTCONSTRAINTS

!

WHO AM I?
I run M Cubed Software (mcubedsw.com)	

Built many apps using Auto Layout	

Last year I talked about how Auto Layout thinks	

This year I’ll talk about how you should think

!

WHAT IS AUTO LAYOUT?
Constraint-based layout system for iOS & Mac	

Define relationships between views	

Introduced in Mac OS X 10.7 and iOS 6	

Make previously complex layout problems simple	

Requires a different way of thinking about layout	

Fits more closely to your natural mental model

CONSTRAINTS: HOW DO
THEY WORK?

!

CONSTRAINTS

Represented by NSLayoutConstraint	

Defines relationship between two attributes	

Attributes are effectively variables	

Treat a constraint as small function modifying a variable

y = mx + c

!

CONSTRAINTS

Represented by NSLayoutConstraint	

Defines relationship between two attributes	

Attributes are effectively variables	

Treat a constraint as small function modifying a variable

view1.attribute = m * x + c

!

CONSTRAINTS

Represented by NSLayoutConstraint	

Defines relationship between two attributes	

Attributes are effectively variables	

Treat a constraint as small function modifying a variable

view1.attribute = m * view2.attribute + c

!

CONSTRAINTS

Represented by NSLayoutConstraint	

Defines relationship between two attributes	

Attributes are effectively variables	

Treat a constraint as small function modifying a variable

view1.attribute = multiplier * view2.attribute + constant

!

CONSTRAINTS

Represented by NSLayoutConstraint	

Defines relationship between two attributes	

Attributes are effectively variables	

Treat a constraint as small function modifying a variable

v1.attr = multipler * v2.attr + constant

!

CONSTRAINTS

Represented by NSLayoutConstraint	

Defines relationship between two attributes	

Attributes are effectively variables	

Treat a constraint as small function modifying a variable

v1.attr = multipler * v2.attr + constant

!

ATTRIBUTES

Width

Height

v1.attr = multipler * v2.attr + constant

!

ATTRIBUTES

CenterX

CenterY

Baseline

v1.attr = multipler * v2.attr + constant

!

ATTRIBUTES

Left

Leading

Right

Trailing

Top

Bottom

v1.attr = multipler * v2.attr + constant

!

ATTRIBUTES

Left

Leading

Right

Trailing

Top

Bottom

v1.attr = multipler * v2.attr + constant

!

RELATIONSHIPS

Equal	

Greater than or equal to	

Less than or equal to

v1.attr = multipler * v2.attr + constant

!

MULTIPLIER AND CONSTANT

Multiplier - The ratio between two attributes	

Constant - The difference between two attributes

v1.attr = multipler * v2.attr + constant

!

PRIORITY

How strongly should a constraint be satisfied	

Constraints required by default	

Optional constraints can be broken without errors	

Required constraints have priority 1000	

Lower priority constraints are broken to satisfy higher priority ones

v1.attr = multipler * v2.attr + constant

YOUR NEW MENTAL MODEL

!

RELATIVE VS ABSOLUTE

Don’t think in frames, think in relationships	

Most constraints are relative to other attributes	

No need to do complex calculations based on other views

!

THINKING IN VALUES

Can be hard to work out what attributes, constant etc to use	

Don’t think of them as abstract values	

Substitute in numbers

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
box.bottom

view.bottom

35 y = mx + c

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
box.bottom

view.bottom

35 box.bottom = mx + c

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
box.bottom

view.bottom

35 box.bottom = x + c

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
box.bottom

view.bottom

35 box.bottom = view.bottom + c

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
box.bottom

view.bottom

35 box.bottom = view.bottom ± 35

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
box.bottom

75

35 box.bottom = view.bottom ± 35

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
box.bottom

75

35 box.bottom = view.bottom - 35

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
40

75

35 box.bottom = view.bottom - 35

!

THINKING IN VALUES

Relationship between box.bottom
and view.bottom	

Distance between is 35
40

75

35 view.bottom = box.bottom + 35

!

CONSTRAINING A VIEW

All views need at least 4 constraints	

Need to position and size in both horizontal and vertical axes

leading
!

top
!

width
!

height

!

CONSTRAINING A VIEW

All views need at least 4 constraints	

Need to position and size in both horizontal and vertical axes

trailing
!

bottom
!

width
!

height

!

CONSTRAINING A VIEW

All views need at least 4 constraints	

Need to position and size in both horizontal and vertical axes

top
!

bottom
!

leading
!

trailing

!

INTRINSIC CONTENT SIZE

Views know how to layout some content	

Therefore they know the smallest size to display that content	

Implicit constraints defining intrinsic width & height

Hello100pt

200pt

!

INTRINSIC CONTENT SIZE

Views know how to layout some content	

Therefore they know the smallest size to display that content	

Implicit constraints defining intrinsic width & height

Hello=100

=200

@250Hugging

!

INTRINSIC CONTENT SIZE

Views know how to layout some content	

Therefore they know the smallest size to display that content	

Implicit constraints defining intrinsic width & height

Hello≥100

≥200

@750Compression Resistance

!

INTRINSIC CONTENT SIZE

GoodbyeHello

!

INTRINSIC CONTENT SIZE

GoodbyeHello…

!

INTRINSIC CONTENT SIZE

GoodbyeHello…

!

INTRINSIC CONTENT SIZE

GoodbyeHello World

CALCULATING
UITABLEVIEWCELL

HEIGHTS

!

AUTO LAYOUT & UITABLEVIEW

Create table cells as any view, adding constraints to define height	

Use -systemLayoutSizeFittingSize: to return height	

Get cell from table view	

Set a vertical constraint to have priority 999	

Or use template cell

!

AUTO LAYOUT & UITABLEVIEW

Create table cells as any view, adding constraints to define height	

Set estimatedRowHeight to most common height	

Ensure rowHeight is UITableViewAutomaticDimension

iOS 8

AUTO-RESIZING
UIIMAGEVIEW

😄

💩

!

AUTORESIZING

Subclass UIImageView	

Add following:

- (CGSize)intrinsicContentSize {
 return self.image.size;
}

- (void)setImage:(UIImage *)aImage {
 [super setImage:aImage];
 [self invalidateIntrinsicContentSize];
}

!

AUTORESIZING (WITH LIMITS)
- (CGSize)intrinsicContentSize {
 CGSize imageSize = self.image.size;
 CGSize maxSize = self.preferredMaxSize;

 if (imageSize.height > maxSize.height) {
 imageSize.width *= maxSize.height / imageSize.height;
 imageSize.height = maxSize.height;
 }
 if (imageSize.width > maxSize.width) {
 imageSize.height *= maxSize.width / imageSize.width;
 imageSize.width = maxSize.width;
 }
 return imageSize;
}

SWITCHING ORIENTATION

!

DISABLING/ENABLING CONSTRAINTS

Make constraints optional	

Set constraint priorities to 999 to enable	

Set to 1 to disable

!

DISABLING/ENABLING CONSTRAINTS

New active property	

+[NSLayoutConstraint (de)activateConstraints:] for bulk
changes	

Use NIBs with size classes

iOS 8

ANIMATION

!

FRAME BASED ANIMATION

[UIView animateWithDuration:0.5 animations:^{

!
!
!
!
}];

CGFloat panelHeight = 150;
[panel setFrame:CGRectMake(0,
 CGRectGetHeight(view.frame),
 CGRectGetWidth(view.frame),
 panelHeight)];

[view addSubview:panel];

 CGFloat y = CGRectGetHeight(view.frame) - panelHeight;
 [panel setFrame:CGRectMake(0,
 y,
 CGRectGetWidth(view.frame),
 panelHeight)];

!

AUTO LAYOUT BASED ANIMATION
CGFloat panelHeight = 150;
[view addSubview:panel];
[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“|[panel]|”
 options:0
 metrics:nil
 views:@{@“panel”:panel}];
[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“V:[panel(==height)]"
 options:0
 metrics:@{@"height":panelHeight}
 views:@{@“panel”:panel}];

view.bottom

panel.bottom

==panelHeight

panel.bottom = view.bottom + panelHeight

!

AUTO LAYOUT BASED ANIMATION

[UIView animateWithDuration:0.5 animations:^{
!
!
}];

CGFloat panelHeight = 150;
[view addSubview:panel];
[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“|[panel]|”
 options:0
 metrics:nil
 views:@{@“panel”:panel}];

id bottom = [NSLayoutConstraint constraintWithItem:panel
 attribute:NSLayoutAttributeBottom
 relatedBy:NSLayoutRelationEqual
 toItem:view
 attribute:NSLayoutAttributeBottom
 multiplier:1
 constant:panelHeight];

[view layoutIfNeeded];
[view addConstraint:bottom];

 [bottom setConstant:0];
 [view layoutIfNeeded];

[view addConstraints:[NSLayoutConstraint constraintWithVisualFormat:@“V:[panel(==height)]"
 options:0
 metrics:@{@"height":panelHeight}
 views:@{@“panel”:panel}];

!

FRAME BASED ANIMATION
CGFloat panelHeight = 150;
CGFloat margin = 20;

[UIView animateWithDuration:0.5 animations:^{
!
!
!
!
!
!
!
!
!
!
}];

 CGFloat viewHeight = CGRectGetHeight(view.frame);
 CGFloat viewWidth = CGRectGetWidth(view.frame);
 CGFloat panelHeight = CGRectGetHeight(panel.frame);

 CGFloat panelY = viewHeight - panelHeight;
 [panel setFrame:CGRectMake(0, panelY, viewWidth, panelHeight)];

 CGFloat subviewWidth = viewWidth - (margin * 2)
 CGFloat subviewHeight = viewHeight - panelHeight - (margin * 2);
 [subview setFrame:CGRectMake(margin, margin, subviewWidth, subviewHeight)];

!

AUTO LAYOUT BASED ANIMATION

[UIView animateWithDuration:0.5 animations:^{
 [bottomConstraint setConstant:0];
 [view layoutIfNeeded];
}];

[UIView animateWithDuration:0.5 animations:^{
 [bottomConstraint setConstant:CGRectGetHeight(panel.frame)];
 [view layoutIfNeeded];
}];

!

WHERE TO FIND ME

I code (mcubedsw.com)	

I blog (pilky.me)	

I tweet (@pilky)	

I’m writing a book (autolayoutguide.com)

QUESTIONS?

