THINKING IN
NSLAYOUTCONSTRAINTS



WHO AM !

® |run M Cubed Software (mcubedsw.com)
® Bullt many apps using Auto Layout
® |ast year | talked about how Auto Layout thinks

® [his year I'll talk about how you should think



WHAT IS AUTO LAYOUT?

® Constraint-based layout system for iIOS & Mac

® Define relationships between views

® Introduced in Mac OS X 10.7 and 10S 6

® Make previously complex layout problems simple
® Requires a different way of thinking about layout

® Fits more closely to your natural mental model



CONSTRAINTS: HOW DO
THEY WORK?




CONSTRAINTS

® Represented by NSLayoutConstraint
® Defines relationship between two attributes
® Attributes are effectively variables

® [reat a constraint as small function modifying a variable

y = mX + C



CONSTRAINTS

® Represented by NSLayoutConstraint
® Defines relationship between two attributes
® Attributes are effectively variables

® [reat a constraint as small function modifying a variable

viewl.attribute = m x X + C



CONSTRAINTS

® Represented by NSLayoutConstraint
® Defines relationship between two attributes
® Attributes are effectively variables

® [reat a constraint as small function modifying a variable

m x view2.attribute + c

viewl.attribute



CONSTRAINTS

® Represented by NSLayoutConstraint
® Defines relationship between two attributes
® Attributes are effectively variables

® [reat a constraint as small function modifying a variable

viewl.attribute = multiplier *x view2.attribute + constant



CONSTRAINTS

® Represented by NSLayoutConstraint
® Defines relationship between two attributes
® Attributes are effectively variables

® [reat a constraint as small function modifying a variable

vl.attr = multipler *x v2.attr + constant



vl.attr = multipler % v2.attr + constant

CONSTRAINTS

® Represented by NSLayoutConstraint
® Defines relationship between two attributes
® Attributes are effectively variables

® [reat a constraint as small function modifying a variable



vl.attr v2.attr

ATTRIBUTES




vl.attr v2.attr

ATTRIBUTES

CenterX

Saseline ——




vl.attr v2.attr

ATTRIBUTES

Right

Trailing




vl.attr v2.attr

ATTRIBUTES

| eft

Tralling




RELATIONSHIPS

® [tqual
® Greater than or equal to

® [essthan or equal to



multipler constant

MULTIPLIER AND CONSTANT

® Multiplier - The ratio between two attributes

® (Constant - The difference between two attributes



PRIORITY

® How strongly should a constraint be satisfied

® Constraints required by default

® Optional constraints can be broken without errors
® Required constraints have priority 000

® |ower priority constraints are broken to satisfy higher priority ones



YOUR NEW MENTAL MODE|




RELATIVE VS ABSOLUTE

® Don'tthink in frames, think in relationships
® Most constraints are relative to other attributes

® No need to do complex calculations based on other views



THINKING IN VALUES

® (Can be hard to work out what attributes, constant etc to use
® Don't think of them as abstract values

® Substitute In numbers



THINKING IN VALUES

® Relationship between box.bottom
and view.bottom

® [istance between is 35

box.bottom

Yy = mX + C




THINKING IN VALUES

® Relationship between box.bottom
and view.bottom

® Distance between is 35

box.bottom

box.bottom = mx + C




THINKING IN VALUES

® Relationship between box.bottom
and view.bottom

® Distance between is 35

box.bottom

box.bottom = X + C




THINKING IN VALUES

Relationship between box. bottom
and view.bottom

Distance between is 35

box.bottom = view.bottom + C



THINKING IN VALUES

Relationship between box. bottom
and view.bottom

Distance between is 35

box.bottom = view.bottom * 35



THINKING IN VALUES

Relationship between box. bottom
and view.bottom

Distance between is 35

box.bottom = view.bottom * 35



THINKING IN VALUES

Relationship between box. bottom
and view.bottom

Distance between is 35

box.bottom = view.bottom - 35



THINKING IN VALUES

Relationship between box. bottom
and view.bottom

Distance between is 35

box.bottom = view.bottom - 35



THINKING IN VALUES

® Relationship between box.bottom
and view.bottom

® Distance between is 35

view.bottom = box.bottom + 35




CONSTRAINING A VIEW

® All views need at least 4 constraints

® Need to position and size in both horizontal and vertical axes

leading
top
width

height



CONSTRAINING A VIEW

® All views need at least 4 constraints

® Need to position and size in both horizontal and vertical axes

trailing
bottom
width

height



CONSTRAINING A VIEW

® All views need at least 4 constraints

® Need to position and size in both horizontal and vertical axes

top
bottom
leading

trailing



INTRINSIC CONTENT SIZE

® Views know how to layout some content
® Therefore they know the smallest size to display that content

® |mplicit constraints defining intrinsic width & height




INTRINSIC CONTENT SIZE

® Views know how to layout some content
® Therefore they know the smallest size to display that content

® |mplicit constraints defining intrinsic width & height

Hugging




INTRINSIC CONTENT SIZE

® Views know how to layout some content
® Therefore they know the smallest size to display that content

® |mplicit constraints defining intrinsic width & height

Compression Resistance @750




INTRINSIC CONTENT SIZE

—




INTRINSIC CONTENT SIZE

—




INTRINSIC CONTENT SIZE




INTRINSIC CONTENT SIZE

Hello World Goodbye




CALCULATING
UITABLEVIEWCEL
HEIGHTS




AUTO LAYOUT & UITABLEVIEW

® Create table cells as any view, adding constraints to define height
® Use —systemLayoutSizeFittingSize: to return height
® Get cell from table view

® Set a vertical constraint to have priority 999

® Or use template cell



AUTO LAYOUT & UITABLEVIEW OS 8

® Create table cells as any view, adding constraints to define height
® SetestimatedRowHeight to most common height

® FEnsure rowHeight is UITableViewAutomaticDimension



AUTO-RESIZING
UIIMAGEVIEW













AUTORESIZING

® Subclass UllmageView

® Add following:

— (CGSize)intrinsicContentSize {
return self.image.size;

- (void)setImage: (UIImage *x)alImage {
[super setImage:almagel;
[self invalidateIntrinsicContentSizel;



AUTORESIZING (WITH LIMITS)

— (CGSize)intrinsicContentSize A
CGSize 1imageSize = self.image.size;
CGSize maxSize = self.preferredMaxSize;

if (imageSize.height > maxSize.height) {
imageSize.width *= maxSize.height / imageSize.height;
imageSize.height = maxSize.height;

s

if (imageSize.width > maxSize.width) {

imageSize.height *= maxSize.width / 1mageSize.width;
imageSize.width = maxSize.width;

}

return 1mageSize;



SWITCHING ORIENTATION










DISABLING/ENABLING CONSTRAINTS

® Make constraints optional
® Set constraint priorities to 999 to enable

® Setto | to disable



DISABLING/ENABLING CONSTRAINTS  iOS 8

® New active property

® +[NSLayoutConstraint (de)activateConstraints:] for bulk
changes

® Use NIBs with size classes



AANINNIOIN









FRAME BASED ANIMATION

CGFloat panelHeight = 150;

[panel setFrame:CGRectMake (0,
CGRectGetHeight(view. frame),
CGRectGetWidth(view. frame),
panelHeight)1;

[view addSubview:panel];

[UIView animateWithDuration:0.5 animations:”™{
CGFloat y = CGRectGetHeight(view.frame) — panelHeight;
[panel setFrame:CGRectMake (0,
Y,
CGRectGetWidth(view. frame),
panelHeight)];

H;



AUTO LAYOUT BASED ANIMATION

CGFloat panelHeight = 150;
[view addSubview:panell;
[view addConstraints: [NSLayoutConstraint constraintWithVisualFormat:@"“| [panell|”
options:0
metrics:nil
views:@{@"“panel”:panel}];

[view addConstraints: [NSLayoutConstraint constraintWithVisualFormat:@“V: [panel(==height)]"
options:0
metrics:@{@"height":panelHeight}

views:@{@"“panel”:panel}];



view.bottom

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

panel.bottom = view.bottom + panelHeight



AUTO LAYOUT BASED ANIMATION

CGFloat panelHeight = 150;
[view addSubview:panell;
[view addConstraints: [NSLayoutConstraint constraintWithVisualFormat:@"“| [panell|”
options:0
metrics:nil
views:@{@"“panel”:panel}];

[view addConstraints: [NSLayoutConstraint constraintWithVisualFormat:@“V: [panel(==height)]"
options:0
metrics:@{@"height":panelHeight}

views:@{@"“panel”:panel}];

id bottom = [NSLayoutConstraint constraintWithItem:panel

attribute:NSLayoutAttributeBottom
relatedBy:NSLayoutRelationEqual
toltem:view
attribute:NSLayoutAttributeBottom
multiplier:1
constant:panelHeight];

[view addConstraint:bottom];

[view layoutIfNeeded];

[UIView animateWithDuration:0.5 animations:”{

[bottom setConstant:0];
[view layoutIfNeeded];

il 2









FRAME BASED ANIMATION

CGFloat panelHeight = 150;
CGFloat margin = 20;

[UIView animateWithDuration:0.5 animations:”{
CGFloat viewHeight = CGRectGetHeight(view.frame);
CGFloat viewWidth = CGRectGetWidth(view.frame);
CGFloat panelHeight = CGRectGetHeight(panel. frame);

CGFloat panelY = viewHeight - panelHeight;
[panel setFrame:CGRectMake(@, panelY, viewWidth, panelHeight)];

CGFloat subviewWidth = viewWidth - (margin * 2)
CGFloat subviewHeight = viewHeight - panelHeight - (margin * 2);
[subview setFrame:CGRectMake(margin, margin, subviewWidth, subviewHeight)];

gl -






AUTO LAYOUT BASED ANIMATION

[UIView animateWithDuration:0.5 animations:”™{
[bottomConstraint setConstant:0];
[view layoutIfNeeded];

bl ¢

[UIView animateWithDuration:0.5 animations:”{
[bottomConstraint setConstant:CGRectGetHeight(panel.frame)];
[view layoutIfNeeded];

bill ¢



VWHERE | O FIND ME

® | code (mcubedsw.com)
® | blog (pilkyme)
® |tweet (@pilky)

® [|'m writing a book (autolayoutguide.com)



QUESTIONS!



